Ask Questions, Get Answers

Want to ask us a question? Click here
Browse Questions
Home  >>  CBSE XII  >>  Math  >>  Vector Algebra
0 votes

If $ \overrightarrow a, \overrightarrow b, \overrightarrow c, $are unit vectors such that $ \overrightarrow a + \overrightarrow b + \overrightarrow c = \overrightarrow 0$, find the value of $ \overrightarrow a ⋅ \overrightarrow b + \overrightarrow b ⋅ \overrightarrow c + \overrightarrow c ⋅ \overrightarrow a$.

$\begin{array}{1 1}(A) \frac{1}{\sqrt 2} (a^2+b^2+c^2)\\(B) \frac{-1}{\sqrt 2}(a^2+b^2+c^2) \\ (C) \frac{1}{ 2}(a^2+b^2+c^2) \\ (D) \frac{-1}{ 2}(a^2+b^2+c^2) \end{array} $

Can you answer this question?

1 Answer

0 votes
  • $\overrightarrow a.\overrightarrow a=|\overrightarrow a|^2$
  • $\overrightarrow a.\overrightarrow b=\overrightarrow b.\overrightarrow a$
  • $\Rightarrow$ Vector multiplication is commutative.
Step 1:
Given : $a+b+c=0$------(1)
Pre multiplying eq(1) by $\overrightarrow a$ we get
$\overrightarrow a.\overrightarrow b+\overrightarrow a.\overrightarrow c=-\overrightarrow a.\overrightarrow a$
But $\overrightarrow a.\overrightarrow a=|\overrightarrow a|^2$
Therefore $\overrightarrow a.\overrightarrow b+\overrightarrow a.\overrightarrow c=-\overrightarrow a^2$-------(2)
Step 2:
Pre multiplying eq(1) by $\overrightarrow b$ we get
$\overrightarrow b.\overrightarrow a+\overrightarrow b.\overrightarrow b+\overrightarrow b.\overrightarrow c=0$
$\Rightarrow \overrightarrow b.\overrightarrow a+\overrightarrow b.\overrightarrow c=-b^2$------(3)
Step 3:
Pre multiplying eq(1) by $\overrightarrow c$ we get
$\overrightarrow c.\overrightarrow a+\overrightarrow c.\overrightarrow b+\overrightarrow c.\overrightarrow c=0$
$\Rightarrow \overrightarrow c.\overrightarrow a+\overrightarrow c.\overrightarrow b=-c^2$------(4)
Step 4:
Add equ(2),(3) and (4)
$-(a^2+b^2+c^2)=\overrightarrow a.\overrightarrow b+\overrightarrow a.\overrightarrow c+\overrightarrow b.\overrightarrow a+\overrightarrow b.\overrightarrow c+\overrightarrow c.\overrightarrow a+\overrightarrow c.\overrightarrow b$
But we know $\overrightarrow a.\overrightarrow b=\overrightarrow b.\overrightarrow a$,$\overrightarrow b.\overrightarrow c=\overrightarrow c.\overrightarrow b$ and $\overrightarrow a.\overrightarrow c=\overrightarrow c.\overrightarrow a$
Hence $-(a^2+b^2+c^2)=2(\overrightarrow a.\overrightarrow b)+2(\overrightarrow b.\overrightarrow c)+2(\overrightarrow c.\overrightarrow a)$
Step 5:
Therefore $-(a^2+b^2+c^2)=2[\overrightarrow a.\overrightarrow b+\overrightarrow b.\overrightarrow c+\overrightarrow c.\overrightarrow a]$
$\Rightarrow \overrightarrow a.\overrightarrow b+\overrightarrow b.\overrightarrow c+\overrightarrow c.\overrightarrow a=\large\frac{-1}{2}$$(a^2+b^2+c^2)$
answered May 21, 2013 by sreemathi.v

Related questions

Ask Question
student study plans
JEE MAIN, CBSE, NEET Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App