logo

Ask Questions, Get Answers

 
X
 Search
Want to ask us a question? Click here
Browse Questions
Ad
Home  >>  CBSE XII  >>  Math  >>  Integrals
0 votes

Integrate the function $\sin x\sin(\cos x)$

$\begin{array}{1 1} \cos(\cos x)+c. \\\cos(\sin x)+c. \\ \sin(\cos x)+c. \\ \sin(\sin x)+c.\end{array} $

Can you answer this question?
 
 

1 Answer

0 votes
Toolbox:
  • Method of substitution:
  • Given $\int f(x)dx$ can be transformed into another form by changing independent variable x to t by substituting x=g(t).
  • Consider $I=\int f(x)dx.$
  • Put x=g(t) so that $\frac{dx}{dx}=g'(t).
  • dx=g'(t)dt.
  • Thus $ I=\int f(g(t).g'(t))dt.$
Given $I=\int\sin x\sin(\cos x)dx.$
 
Let $\cos x$ be t.
 
Differentiating on both sides we get,
 
$-\sin xdx=dt$.
 
Now substituting for $\cos x$ and $\sin xdx$ we get,
 
$I=-\int \sin t.dt$
 
On integrating we get,
$\cos t+c$.
 
Now Substituting for t we get,
 
$\cos(\cos x)+c.$
 
Hence $\int\sin x\sin(\cos x)dx=\cos(\cos x)+c.$

 

answered Jan 28, 2013 by sreemathi.v
 
Ask Question
student study plans
x
JEE MAIN, CBSE, NEET Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App
...