Ask Questions, Get Answers

Want to ask us a question? Click here
Browse Questions
Home  >>  CBSE XII  >>  Math  >>  Integrals
0 votes

Integrate the function $\sin x\sin(\cos x)$

$\begin{array}{1 1} \cos(\cos x)+c. \\\cos(\sin x)+c. \\ \sin(\cos x)+c. \\ \sin(\sin x)+c.\end{array} $

Can you answer this question?

1 Answer

0 votes
  • Method of substitution:
  • Given $\int f(x)dx$ can be transformed into another form by changing independent variable x to t by substituting x=g(t).
  • Consider $I=\int f(x)dx.$
  • Put x=g(t) so that $\frac{dx}{dx}=g'(t).
  • dx=g'(t)dt.
  • Thus $ I=\int f(g(t).g'(t))dt.$
Given $I=\int\sin x\sin(\cos x)dx.$
Let $\cos x$ be t.
Differentiating on both sides we get,
$-\sin xdx=dt$.
Now substituting for $\cos x$ and $\sin xdx$ we get,
$I=-\int \sin t.dt$
On integrating we get,
$\cos t+c$.
Now Substituting for t we get,
$\cos(\cos x)+c.$
Hence $\int\sin x\sin(\cos x)dx=\cos(\cos x)+c.$


answered Jan 28, 2013 by sreemathi.v
Ask Question
student study plans
JEE MAIN, CBSE, NEET Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App