Ask Questions, Get Answers

Want to ask us a question? Click here
Browse Questions
Home  >>  CBSE XII  >>  Math  >>  Vector Algebra
0 votes

Show that \(| \overrightarrow a | \overrightarrow b + | \overrightarrow b | \overrightarrow a\) is perpendicular to \(| \overrightarrow a | \overrightarrow b - | \overrightarrow b | \overrightarrow a\), for any two nonzero vectors \(\overrightarrow a\) and \(\overrightarrow b\).

$\begin{array}{1 1}(A) \overrightarrow a.\overrightarrow b=0 \\(B) \overrightarrow a=\overrightarrow b \\ (C) \overrightarrow a.\overrightarrow b=1 \\(D) None \;of\; the\; above \end{array} $

Can you answer this question?

1 Answer

0 votes
  • If $\overrightarrow a\perp \overrightarrow b$ then $\overrightarrow a.\overrightarrow b=0$
  • $\overrightarrow a.\overrightarrow b=\overrightarrow b.\overrightarrow a$
  • $|\overrightarrow a|^2=\overrightarrow a.\overrightarrow a$
Step 1:
Let $\overrightarrow p=|\overrightarrow a|\overrightarrow b+|\overrightarrow b|\overrightarrow a$
$\overrightarrow q=|\overrightarrow a|\overrightarrow b-|\overrightarrow b|\overrightarrow a$
Then $\overrightarrow p.\overrightarrow q=[|\overrightarrow a|\overrightarrow b+|\overrightarrow b|\overrightarrow a].[|\overrightarrow a|\overrightarrow b-|\overrightarrow b|\overrightarrow a]$
$\qquad\qquad=|\overrightarrow a|\overrightarrow b.[|\overrightarrow a|\overrightarrow b-|\overrightarrow b|\overrightarrow a]+|\overrightarrow b|\overrightarrow a.[|\overrightarrow a|\overrightarrow b-|\overrightarrow b|\overrightarrow a]$
$\qquad\qquad\;=|\overrightarrow a|^2\overrightarrow b.\overrightarrow b-|\overrightarrow a||\overrightarrow b|\overrightarrow b.\overrightarrow a+|\overrightarrow b||\overrightarrow a||\overrightarrow a.\overrightarrow b|-|\overrightarrow a.\overrightarrow b|-|\overrightarrow b|^2|\overrightarrow a.\overrightarrow a|$
Step 2:
But we know $\overrightarrow a.\overrightarrow b=\overrightarrow b.\overrightarrow a$ and $\overrightarrow a.\overrightarrow a=|\overrightarrow a|^2$ and $\overrightarrow b.\overrightarrow b=|\overrightarrow b|^2$
Therefore $\overrightarrow p.\overrightarrow q=|\overrightarrow a|^2|\overrightarrow b|^2-|\overrightarrow a||\overrightarrow b|\overrightarrow a.\overrightarrow b+|\overrightarrow a||\overrightarrow b|\overrightarrow a.\overrightarrow b-|\overrightarrow b|^2|\overrightarrow a|^2$
$\qquad\qquad\qquad=|\overrightarrow a|^2|\overrightarrow b|^2-|\overrightarrow a|^2|\overrightarrow b|^2=0$
Step 3:
Since the scalar product is 0.
$\overrightarrow p\perp \overrightarrow q$ (i.e) $\overrightarrow p.\overrightarrow q=0$
Hence $|\overrightarrow a|\overrightarrow b+|\overrightarrow b|\overrightarrow a$ and $|\overrightarrow a|\overrightarrow b-|\overrightarrow b|\overrightarrow a$ are perpendicular to each other.
If $\overrightarrow a\perp \overrightarrow b$ then $\overrightarrow a.\overrightarrow b=0$
answered May 21, 2013 by sreemathi.v

Related questions

Ask Question
student study plans
JEE MAIN, CBSE, AIPMT Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App