Ask Questions, Get Answers

Want to ask us a question? Click here
Browse Questions
Home  >>  CBSE XII  >>  Math  >>  Vector Algebra
0 votes

Find \(| \overrightarrow x |\), if for a unit vector \( \overrightarrow a , (\overrightarrow x − \overrightarrow a) ⋅ (\overrightarrow x + \overrightarrow a) =12\) .

$\begin{array}{1 1} (A) |\overrightarrow x|=\sqrt{11} \\ (B) |\overrightarrow x|=\sqrt{12} \\ (C) |\overrightarrow x|=\sqrt{13} \\ (D) |\overrightarrow x|=\sqrt{14} \end{array} $

Can you answer this question?

1 Answer

0 votes
  • $\overrightarrow a.\overrightarrow a=\mid\overrightarrow a\mid^2$
  • $\overrightarrow a.\overrightarrow b=\overrightarrow b.\overrightarrow a$
  • $(\overrightarrow x-\overrightarrow a).(\overrightarrow x+\overrightarrow a)=\mid \overrightarrow x\mid^2-\mid\overrightarrow a\mid^2$
Step 1:
$(\overrightarrow x-\overrightarrow a).(\overrightarrow x+\overrightarrow a)=12$
Magnitude of $\mid \overrightarrow a\mid=1$
$(\overrightarrow x-\overrightarrow a).(\overrightarrow x+\overrightarrow a)=\overrightarrow x(\overrightarrow x+\overrightarrow a)-\overrightarrow a(\overrightarrow x+\overrightarrow a)$
$\quad\qquad\qquad\qquad\;\;=\mid \overrightarrow x \mid^2+\overrightarrow x.\overrightarrow a-\overrightarrow a.\overrightarrow x-\mid\overrightarrow a\mid^2$
Step 2:
But $\overrightarrow x.\overrightarrow a=\overrightarrow a.\overrightarrow x$
Therefore $(\overrightarrow x-\overrightarrow a)(\overrightarrow x+\overrightarrow a)=\mid\overrightarrow x\mid^2-\mid\overrightarrow a\mid^2$------(1)
But the product is 12 and $|\overrightarrow a|=1$
$(\overrightarrow x-\overrightarrow a).(\overrightarrow x+\overrightarrow a)=12$
Step 3:
Substitute these values in eq(1) we get
$12=\mid\overrightarrow x\mid^2-1$
$\mid\overrightarrow x\mid^2=12+1$
$\mid\overrightarrow x\mid^2=13$
$\mid\overrightarrow x\mid=\sqrt {13}$
answered May 21, 2013 by sreemathi.v

Related questions

Ask Question
student study plans
JEE MAIN, CBSE, NEET Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App