Ask Questions, Get Answers

Want to ask us a question? Click here
Browse Questions
Home  >>  CBSE XII  >>  Math  >>  Integrals
0 votes

Find the integral $\int\frac{\large 2-3\sin x}{\large \cos^2x}dx$

$\begin{array}{1 1}2\tan x-3\sec x+c \\ 2\cot x-3\sec x+c \\ 3\tan x-2\sec x+c \\ 3\cot x-2\sec x+c \end{array}$

Can you answer this question?

1 Answer

0 votes
  • $(i)\;\int sin xdx=-\cos x$.
  • $(ii)\;\int\sec^2xdx=\tan x.$
$\int\frac{2-3\sin x}{\cos^2x}dx.$
$\;\;\;=\int(\frac{2}{\cos^2x}-\frac{3\sin x}{\cos^2x})dx.[But\frac{1}{\cos^2x}=\sec^2x$ and $\frac{\sin x}{\cos^2x}=\sec xtan x.$]
$\;\;\;=\int2\sec^2xdx-3\sec x\tan xdx$
$\;\;\;=2\int\sec^2xdx-3\int \sec xtan xdx.$
$\;\;\;=2\tan x-3\sec x+c.$
Hence $\int\frac{2-3\sin x}{\cos^2x}dx=2\tan x-3\sec x+c.$


answered Jan 27, 2013 by sreemathi.v
Ask Question
student study plans
JEE MAIN, CBSE, AIPMT Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App