Ask Questions, Get Answers

Want to ask us a question? Click here
Browse Questions
Home  >>  CBSE XII  >>  Math  >>  Vector Algebra
0 votes

Show that each of the given three vectors is a unit vector: $ \large\frac{1}{7}$$ ( 2\hat i + 3\hat j + 6\hat k),\large\frac{1}{7}$$ ( 3\hat i - 6\hat j + 2\hat k), \large\frac{1}{7}$$ ( 6\hat i + 2\hat j - 3\hat k) $ Also, show that they are mutually perpendicular to each other.

Can you answer this question?

1 Answer

0 votes
  • The magnitude of a unit vectors is 1.
  • $ | x\hat i + y\hat j + z\hat k | = \sqrt{x^2+y^2+z^2}$
  • Two vectors are perpendicular if their dot product is zero
Step 1:
Let $\overrightarrow a=\large\frac{1}{7}$$(2\hat i+3\hat j+6\hat k)$
$\quad\overrightarrow b=\large\frac{1}{7}$$(3\hat i-6\hat j+2\hat k)$
$\quad\overrightarrow c=\large\frac{1}{7}$$(6\hat i+2\hat j-3\hat k)$
Let us find the magnitude of $\overrightarrow a,\overrightarrow b$ and $\overrightarrow c$.
$|\overrightarrow a|=\sqrt{\big(\large\frac{2}{7}\big)^2+\big(\large\frac{3}{7}\big)^2+\big(\large\frac{6}{7}\big)^2}$
Similarly $|\overrightarrow b|=\sqrt{\big(\large\frac{3}{7}\big)^2+\big(\large\frac{-6}{7}\big)^2+\big(\large\frac{2}{7}\big)^2}$
Similarly $|\overrightarrow c|=\sqrt{\big(\large\frac{6}{7}\big)^2+\big(\large\frac{2}{7}\big)^2+\big(\large\frac{-3}{7}\big)^2}$
Therefore $\overrightarrow a,\overrightarrow b$ and $\overrightarrow c$ are unit vectors.
Step 2:
Next let us prove that they are mutually perpendicular to each other.
$\overrightarrow a.\overrightarrow b=\large\frac{1}{7}$$(2\hat i+3\hat j+6\hat k).\large\frac{1}{7}$$(3\hat i-6\hat j+2\hat k)$
$\overrightarrow b.\overrightarrow c=\large\frac{1}{7}$$(3\hat i-6\hat j+2\hat k).\large\frac{1}{7}$$(6\hat i+2\hat j-3\hat k)$
$\overrightarrow a.\overrightarrow c=\large\frac{1}{7}$$(2\hat i+3\hat j+6\hat k).\large\frac{1}{7}$$(6\hat i+2\hat j-3\hat k)$
$\Rightarrow$ All the three vectors are mutually perpendicular.
answered May 20, 2013 by sreemathi.v

Related questions

Ask Question
student study plans
JEE MAIN, CBSE, AIPMT Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App