logo

Ask Questions, Get Answers

 
X
 Search
Want to ask us a question? Click here
Browse Questions
Ad
Home  >>  CBSE XII  >>  Math  >>  Integrals
0 votes

Find an anti derivative(or integral)of the function by the method of inspection $\sin2x-4e^{3x}$

Can you answer this question?
 
 

1 Answer

0 votes
Toolbox:
  • $\frac{d}{dx}[F(x)+c]=f(x),$
  • $\int f(x)\;dx=F(x)+c$
We know that $\frac{d}{dx}(\cos 2x)=-2\sin 2x.$
 
$\Rightarrow \frac{-1}{2}\frac{d}{dx}(\cos2x)=\sin2x.$
 
$\sin2x=\frac{d}{dx}\big(\frac{-1}{2}\cos2x\big)$-----(1)
 
We know that the $\frac{d}{dx}(e^{3x})=3e^{3x}.$
 
$\Rightarrow e^{3x}=\frac{1}{3}\frac{d}{dx}(e^{3x}).$
 
$4e^{3x}=\frac{4}{3}\frac{d}{dx}(e^{3x})$--------(2)
 
Hence the anti derivative of $\sin2x-4e^{3x}$ can be obtained by combining equ(1) and equ(2).
 
The antiderivative is $\frac{-1}{2}\cos2x-\frac{4}{3}e^{3x}.$

 

answered Jan 25, 2013 by sreemathi.v
 
Ask Question
student study plans
x
JEE MAIN, CBSE, NEET Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App
...