Want to ask us a question? Click here
Browse Questions
 Ad
0 votes

# If the third term in the expansion of $\bigg(\large\frac{1}{x}$$+ x^{log_{10}x}\bigg)^5 is 1000, then x = ? \begin{array}{1 1} 1 \\ 10 \\ 100 \\ 1000 \end{array} Can you answer this question? ## 1 Answer 0 votes Toolbox: • General term in the expansion of (x+y)^n = T_{r+1}=^nC_rx^{n-r}.y^r • log_a( b)^n=n.log_a b • log_a b=\large\frac{1}{log_b a} • If log_a b=x, then a^x=b Given T_3=1000 \Rightarrow^5C_2\big(\large\frac{1}{x}\big)^3$$.\big(x^{log_{10}x}\big)^2=1000$
$\Rightarrow\:10.x^{-3}.\big(\large x^{log_{10}x}\big)^2$$=1000 \Rightarrow\:x^{-3}\large x^{2log_{10}x}$$=100$
$\Rightarrow\:\large x^{(2log_{10}x - 3)}$$=100 \Rightarrow\:2log_{10}-3=log_x10^2$$=2log_x 10$
$\Rightarrow\:2log_{10}x-3=\large\frac{2}{log_{10}x}$
Let $y=log_{10}x$
$\Rightarrow\:2y-3=\large\frac{2}{y}$
$\Rightarrow\:2y^2-3y-2=0$
$\Rightarrow\:y=2\:\:or\:\:-\large\frac{1}{2}$
Since $y not leq 0, \:y=2$
$\Rightarrow\:log_{10}x=2$ or $x=10^2=100$
answered Sep 23, 2013

0 votes
1 answer

0 votes
1 answer

0 votes
1 answer

0 votes
1 answer

0 votes
1 answer

0 votes
1 answer

0 votes
1 answer