logo

Ask Questions, Get Answers

X
 
Home  >>  CBSE XII  >>  Math  >>  Integrals

Find an anti derivative(or integral)of the function by the method of inspection $\sin 2x$

1 Answer

Toolbox:
  • $\frac{d}{dx}[F(x)+c]=f(x),x\in I$
  • $\int f(x)\;dx=F(x)+c$
We know that $\frac{d}{dx}(\cos 2x)=-2\sin 2x.$
 
$\sin 2x=\frac{-1}{2}\frac{d}{dx}(\cos 2x).$
 
$\qquad\;\;=\frac{d}{dx}\big(\frac{-1}{2}\cos 2x\big).$
 
Therefore an anti derivative of $\sin 2x$ is $\frac{-1}{2}\cos 2x$.

 

answered Jan 25, 2013 by sreemathi.v
 
...