Ask Questions, Get Answers

Want to ask us a question? Click here
Browse Questions
Home  >>  CBSE XII  >>  Math  >>  Vector Algebra
0 votes

Find the angle between the vectors \(\hat i - 2\hat j + 3\hat k\) and \( 3\hat i - 2\hat j + \hat k\)

$\begin{array}{1 1} (A) \cos^{-1} \bigg( \large\frac{2}{7} \bigg) \\ (B) \cos^{-1} \bigg( \large\frac{4}{7} \bigg) \\ (C) \cos^{-1} \bigg( \large\frac{1}{7} \bigg) \\ (D) \cos^{-1} \bigg( \large\frac{5}{7} \bigg) \end{array} $

Can you answer this question?

1 Answer

0 votes
  • The scalar product of two vectors is $\overrightarrow a.\overrightarrow b=\mid \overrightarrow a\mid\mid\overrightarrow b\mid\cos\theta$
  • Hence the angle between two vectors is given by $\cos\theta=\large\frac{\overrightarrow a.\overrightarrow b}{\mid\overrightarrow a\mid\mid\overrightarrow b\mid}$
Step 1:
Let $\overrightarrow a=\hat i-2\hat j+3\hat k$ and $\overrightarrow b=3\hat i-2\hat j+\hat k$
We know that $\overrightarrow a.\overrightarrow b=|\overrightarrow a||\overrightarrow b|\cos\theta$
$\cos\theta=\large\frac{\overrightarrow a.\overrightarrow b}{\mid\overrightarrow a\mid\mid\overrightarrow b\mid}$
$\mid \overrightarrow a\mid=\sqrt{1^2+(-2)^2+3^2}$
Similarly $\mid \overrightarrow b\mid=\sqrt{3^2+(-2)^2+1^2}$
Step 2:
$\overrightarrow a.\overrightarrow b=(\hat i-2\hat j+3\hat k).(3\hat i-2\hat j+\hat k)$
Scalar product of two vectors is just multiplication of the scalar quantities of the respective components.
$\overrightarrow a.\overrightarrow b=(3+4+3)=10.$
Step 3:
Substituting these values for $\cos\theta$ we get,
$\cos\theta=\large\frac{10}{\sqrt{14}\sqrt {14}}$
Therefore $\theta=\cos^{-1}\big(\large\frac{5}{7}\big)$
answered May 20, 2013 by sreemathi.v

Related questions

Ask Question
student study plans
JEE MAIN, CBSE, AIPMT Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App