Ask Questions, Get Answers

Want to ask us a question? Click here
Browse Questions
Home  >>  CBSE XII  >>  Math  >>  Vector Algebra
0 votes

Find the angle between two vectors \( \overrightarrow a\) and \( \overrightarrow b\) with magnitudes \( \sqrt 3\) and \(2\) , respectively having \( \overrightarrow a . \overrightarrow b = \sqrt 6.\)

Can you answer this question?

1 Answer

0 votes
  • The scalar product of two vectors is $\overrightarrow a.\overrightarrow b=|\overrightarrow a||\overrightarrow b|\cos\theta$
Step 1:
Given : The magnitude of $\overrightarrow a=\sqrt 3$ and $\overrightarrow b=2$
$\Rightarrow \mid \overrightarrow a\mid=\sqrt 3$ and $\mid \overrightarrow b\mid=2$
Also $\overrightarrow a.\overrightarrow b=\sqrt 6$
We know $\overrightarrow a.\overrightarrow b=|\overrightarrow a||\overrightarrow b|\cos\theta$
$\cos \theta=\large\frac{\overrightarrow a.\overrightarrow b}{\mid\overrightarrow a\mid\mid\overrightarrow b\mid}$
Step 2:
Now substituting the values we get,
$\cos\theta=\large\frac{\sqrt 6}{\sqrt 3\times 2}$
This can be written as
$\cos\theta=\large\frac{\sqrt 2\times \sqrt 3}{\sqrt 3\times \sqrt 2\times \sqrt 2}$
$\qquad=\large\frac{1}{\sqrt 2}$
Step 3:
Therefore $\theta=\cos^{-1}\big(\large\frac{1}{\sqrt 2}\big)$
Hence the angle between $\overrightarrow a$ and $\overrightarrow b$ is $\large\frac{\pi}{4}$
answered May 20, 2013 by sreemathi.v

Related questions

Ask Question
student study plans
JEE MAIN, CBSE, NEET Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App