logo

Ask Questions, Get Answers

 
X
 Search
Want to ask us a question? Click here
Browse Questions
Ad
Home  >>  EAMCET  >>  Mathematics
0 votes

Let R denotes the set of all real numbers and $R^{+}$ denote the set of all positive real numbers. For the subsets $A$ and $B$ of R define $f:A \to B$ by $f(x)=x^2$ for $x \in A$. Observe the two lists given below:

List I List II

(i) f is one-one and onto if

(ii) f is one-one but not onto if 

(iii) f is onto but not one-one if

(iv) f is neither one-one nor onto if 

(a) $A=R^{+}, B=R$

(b) $A=B=R$

(c) $A=R,B=R^{+}$

(d) $A=B=R^{=}$

The correct matching of list I to List II is

      (i)    (ii)    (iii)   (iv)

(1)  (a)  (b)   (c)    (d)

(2)  (d)  (b)   (a)    (c)

(3)  (d)  (a)   (c)    (b)

(4)   (d) (b)   (c)    (a)

Can you answer this question?
 
 

1 Answer

0 votes
(3)
answered Nov 7, 2013 by pady_1
 

Related questions

Ask Question
student study plans
x
JEE MAIN, CBSE, NEET Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App
...