Ask Questions, Get Answers

Want to ask us a question? Click here
Browse Questions
Home  >>  CBSE XII  >>  Math  >>  Vector Algebra
0 votes

Find the direction cosines of the vector \( \hat i + 2\hat j + 3\hat k\) .

$\begin{array}{1 1}(A) \bigg( \large\frac{-1}{\sqrt{14}}, \large\frac{2}{\sqrt{14}}, \large\frac{3}{\sqrt{14}}\bigg) \\ (B) \bigg( \large\frac{1}{\sqrt{14}}, \large\frac{2}{\sqrt{14}}, \large\frac{3}{\sqrt{14}}\bigg) \\ (C) \bigg( \large\frac{1}{\sqrt{14}}, \large\frac{-2}{\sqrt{14}}, \large\frac{3}{\sqrt{14}}\bigg) \\(D) \bigg( \large\frac{1}{\sqrt{14}}, \large\frac{2}{\sqrt{14}}, \large\frac{-3}{\sqrt{14}}\bigg) \end{array} $

Can you answer this question?

1 Answer

0 votes
  • The cosines of the angle made by the vector with the coordinate axes is called direction cosines.
  • Direction cosine (D.C) of vector $ x\hat i + y\hat j + 2\hat k$ is $ \large\frac{x}{\sqrt{x^2+y^2+z^2}}, \large\frac{y}{\sqrt{x^2+y^2+z^2}}, \large\frac{z}{\sqrt{x^2+y^2+z^2}}$
Step 1:
$ Let\:\overrightarrow a = \hat i + 2\hat j + 3\hat k$
The magnitude of $\overrightarrow{a}=|\overrightarrow{a}|=\sqrt{x^2+y^2+z^2}$
step 2:
We know that D.C of vector $ x\hat i + y\hat j + 2\hat k$ is $\bigg( \large\frac{x}{\sqrt{x^2+y^2+z^2}}, \large\frac{y}{\sqrt{x^2+y^2+z^2}}, \large\frac{z}{\sqrt{x^2+y^2+z^2}}\bigg)$
Here $x=1,y=2,z=3$
D.C of $ \overrightarrow a = \bigg( \large\frac{1}{\sqrt{14}}, \large\frac{2}{\sqrt{14}}, \large\frac{3}{\sqrt{14}}\bigg) $
answered May 17, 2013 by sreemathi.v

Related questions

Ask Question
student study plans
JEE MAIN, CBSE, NEET Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App