Ask Questions, Get Answers

Want to ask us a question? Click here
Browse Questions
Home  >>  CBSE XII  >>  Math  >>  Vector Algebra
0 votes

For given vectors, $ \overrightarrow a=2\hat i − \hat j + 2\hat k$ and $ \overrightarrow b=−\hat i + \hat j − \hat k$, find the unit vector in the direction of the vector $ \overrightarrow a +\overrightarrow b.$

$\begin{array}{1 1}(A) \large \frac{-1}{\sqrt 2}\hat i-\large\frac{1}{\sqrt 2}\hat k \\(B) \large \frac{1}{\sqrt 2}\hat i-\large\frac{1}{\sqrt 2}\hat k \\ (C) \large \frac{-1}{\sqrt 2}\hat i+\large\frac{1}{\sqrt 2}\hat k \\(D) \large \frac{1}{\sqrt 2}\hat i+\large\frac{1}{\sqrt 2}\hat k \end{array} $

Can you answer this question?

1 Answer

0 votes
  • If $\overrightarrow a=(x_1\hat i+y_1\hat j+z_1\hat k)$ and $\overrightarrow b=(x_2\hat i+y_2\hat j+z_2\hat k)$ then $(\overrightarrow a+\overrightarrow b)=(x_1+x_2)\hat i+(y_1+y_2)\hat j+(z_1+z_2)\hat k$.
  • Unit vector of $\overrightarrow a$ is $\hat a=\large\frac{\overrightarrow a}{|\overrightarrow a|}$
Step 1:
$\overrightarrow a=2\hat i-\hat j+2\hat k$ and $\overrightarrow b=-\hat i+\hat j-\hat k$
Let us find $\overrightarrow a+\overrightarrow b$
$\overrightarrow a+\overrightarrow b=(2-1)\hat i+(-1+1)\hat j+(2-1)\hat k$
$\qquad\quad=\hat i+0\hat j+\hat k$
$\qquad\quad=\hat i+\hat k$
Step 2:
Next let us find the unit vector of $\overrightarrow a+\overrightarrow b$.
The magnitude of $(\overrightarrow a+\overrightarrow b)$ is $|\overrightarrow a+\overrightarrow b|$.
$|\overrightarrow a+\overrightarrow b|=\sqrt{1^2+1^2}$
$\qquad\quad\;\;=\sqrt 2$
Step 3:
Then the unit vector =$\large\frac{(\overrightarrow a+\overrightarrow b)}{|\overrightarrow a+\overrightarrow b|}$
$\qquad\qquad\qquad\;\;\;=\large\frac{\hat i+\hat k}{\sqrt 2}$
$\qquad\qquad\qquad\;\;\;=\large \frac{1}{\sqrt 2}$$\hat i+\large\frac{1}{\sqrt 2}$$\hat k$
answered May 21, 2013 by sreemathi.v

Related questions

Ask Question
student study plans
JEE MAIN, CBSE, NEET Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App