Ask Questions, Get Answers

Want to ask us a question? Click here
Browse Questions
Home  >>  CBSE XII  >>  Math  >>  Vector Algebra
0 votes

Write two different vectors having same direction.

Can you answer this question?

1 Answer

0 votes
  • Two vectors are said to be equal if they have the same direction,but their magnitude can be different.
  • Direction cosines of a vector are $\bigg(\large\frac{a_1}{\sqrt{a_1^2+a_2^2+a_3^2}},\large\frac{a_2}{\sqrt{a_1^2+a_2^2+a_3^2}},\large\frac{a_3}{\sqrt{a_1^2+a_2^2+a_3^2}}\bigg)$
Step 1:
Let us consider two vectors $\overrightarrow{a}=\hat i+\hat j+\hat {k}$ and $\overrightarrow b=3\hat i+3\hat j+3\hat k$
$\mid\overrightarrow a\mid=\sqrt{1^2+1^2+1^2}$
$\qquad=\sqrt 3$
$\mid\overrightarrow b\mid=\sqrt{3^2+3^2+3^2}$
$\qquad=\sqrt 27$
$\qquad=3\sqrt 3$
Hence $\overrightarrow{a}$ and $\overrightarrow{b}$ are different in magnitude.
Step 2:
The direction cosines of $\overrightarrow{a}$ are $\big(\large\frac{1}{\sqrt 3},\large\frac{1}{\sqrt 3},\large\frac{1}{\sqrt 3}\big)$
The direction cosines of $\overrightarrow{b}$ are $\big(\large\frac{3}{\sqrt {27}},\large\frac{3}{\sqrt {27}},\large\frac{3}{\sqrt {27}}\big)$
(i.e)The direction cosines of $\overrightarrow{b}$ are $\big(\large\frac{1}{\sqrt {3}},\large\frac{1}{\sqrt {3}},\large\frac{1}{\sqrt {3}}\big)$
Clearly $\overrightarrow{a}$ and $\overrightarrow{b}$ are same in direction.
Step 3:
Hence vectors $\overrightarrow{a}$ and $\overrightarrow{b}$ have the same direction but different magnitude.
answered May 17, 2013 by sreemathi.v

Related questions

Ask Question
student study plans
JEE MAIN, CBSE, AIPMT Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App