logo

Ask Questions, Get Answers

 
X
 Search
Want to ask us a question? Click here
Browse Questions
Ad
Home  >>  JEEMAIN and AIPMT  >>  Mathematics  >>  Trignometry
0 votes

If $\alpha+\beta+\gamma=\pi$ then the value of $\sin^2\alpha+\sin^2\beta-\sin^2\gamma$ is equal to

$\begin{array}{1 1}(a)\;2\sin\alpha &(b)\;2\sin\alpha\cos\beta\sin\gamma\\(c)\;2\sin\alpha\sin\beta\cos\gamma&(d)\;2\sin\alpha\sin\beta\sin\gamma\end{array}$

Can you answer this question?
 
 

1 Answer

0 votes
$\sin^2\alpha+\sin(\beta-\gamma)\sin(\beta+\gamma)=\sin^2\alpha+\sin(\pi-\alpha)\sin(\beta-\gamma)$
$\qquad\qquad\qquad\qquad\qquad\quad=\sin[\sin\alpha+\sin(\beta-\gamma)+\sin(\beta+\gamma)]$
$\qquad\qquad\qquad\qquad\qquad\quad=2\sin\alpha\sin\beta\cos\gamma$
Hence (c) is the correct answer.
answered Oct 7, 2013 by sreemathi.v
 

Related questions

Ask Question
student study plans
x
JEE MAIN, CBSE, NEET Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App
...