Ask Questions, Get Answers

Want to ask us a question? Click here
Browse Questions
Home  >>  JEEMAIN and AIPMT  >>  Mathematics  >>  Trignometry
0 votes

The numerical value of $\tan 20^{\circ}\tan 80^{\circ}\cot 50^{\circ}$ is equal to

$(a)\;\sqrt 3\qquad(b)\;\large\frac{1}{\sqrt 3}$$\qquad(c)\;2\sqrt 3\qquad(d)\;\large\frac{1}{2\sqrt 3}$

Can you answer this question?

1 Answer

0 votes
$\tan 20^{\circ}\tan 80^{\circ}\cot 50^{\circ}=\tan (50^{\circ}-30^{\circ}).\tan(50^{\circ}+30^{\circ}\large\frac{1}{\tan 50^{\circ}})$
$\qquad\qquad\qquad\qquad\;\;=\large\frac{\tan 50^{\circ}-1/\sqrt 3}{1+\tan 50^{\circ}/\sqrt 3}.\frac{\tan 50^{\circ}+1/\sqrt 3}{1-\tan 50^{\circ}/\sqrt 3}\frac{1}{\tan 50^{\circ}}$
$\qquad\qquad\qquad\qquad\;\;=\large\frac{3\tan^250^{\circ}-1}{3\tan 50^{\circ}-\tan^350^{\circ}}$
$\qquad\qquad\qquad\qquad\;\;=-\cot (150^{\circ})$
$\qquad\qquad\qquad\qquad\;\;=\cot 30^{\circ}$
$\qquad\qquad\qquad\qquad\;\;=\sqrt 3$
Hence (a) is right option.
answered Oct 7, 2013 by sreemathi.v
edited Jan 8, 2014 by sreemathi.v
Ask Question
student study plans
JEE MAIN, CBSE, NEET Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App