logo

Ask Questions, Get Answers

 
X
 Search
Want to ask us a question? Click here
Browse Questions
Ad
Home  >>  JEEMAIN and AIPMT  >>  Mathematics  >>  Trignometry
0 votes

The numerical value of $\tan 20^{\circ}\tan 80^{\circ}\cot 50^{\circ}$ is equal to

$(a)\;\sqrt 3\qquad(b)\;\large\frac{1}{\sqrt 3}$$\qquad(c)\;2\sqrt 3\qquad(d)\;\large\frac{1}{2\sqrt 3}$

Can you answer this question?
 
 

1 Answer

0 votes
$\tan 20^{\circ}\tan 80^{\circ}\cot 50^{\circ}=\tan (50^{\circ}-30^{\circ}).\tan(50^{\circ}+30^{\circ}\large\frac{1}{\tan 50^{\circ}})$
$\qquad\qquad\qquad\qquad\;\;=\large\frac{\tan 50^{\circ}-1/\sqrt 3}{1+\tan 50^{\circ}/\sqrt 3}.\frac{\tan 50^{\circ}+1/\sqrt 3}{1-\tan 50^{\circ}/\sqrt 3}\frac{1}{\tan 50^{\circ}}$
$\qquad\qquad\qquad\qquad\;\;=\large\frac{3\tan^250^{\circ}-1}{3\tan 50^{\circ}-\tan^350^{\circ}}$
$\qquad\qquad\qquad\qquad\;\;=-\cot (150^{\circ})$
$\qquad\qquad\qquad\qquad\;\;=\cot 30^{\circ}$
$\qquad\qquad\qquad\qquad\;\;=\sqrt 3$
Hence (a) is right option.
answered Oct 7, 2013 by sreemathi.v
edited Jan 8, 2014 by sreemathi.v
 
Ask Question
student study plans
x
JEE MAIN, CBSE, NEET Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App
...