logo

Ask Questions, Get Answers

 
X
 Search
Want to ask us a question? Click here
Browse Questions
Ad
Home  >>  JEEMAIN and AIPMT  >>  Mathematics  >>  Trignometry
0 votes

If $A+B=\large\frac{\pi}{3}$ where $A,B\in R^+$ then the minimum value of $\sec A+\sec B$ is equal to

$(a)\;\large\frac{2}{\sqrt 3}\qquad$$(b)\;\large\frac{4}{\sqrt 3}$$\qquad(c)\;2\sqrt 3\qquad(d)\;None\;of\;these$

Can you answer this question?
 
 

1 Answer

0 votes
For $y=\sec x,x\in [0,\large\frac{\pi}{2}]$ tangent drawn to it any point lies completely below the graph of $y=\sec x$ thus
$\large\frac{\sec A\sec B}{2}$$\geq \sec\big(\large\frac{A+B}{2}\big)$
$\Rightarrow \sec A+\sec B\geq 2\sec\big(\large\frac{\pi}{6}\big)$
$\Rightarrow \large\frac{4}{\sqrt 3}$
Hence (b) is right option.
answered Oct 7, 2013 by sreemathi.v
 

Related questions

Ask Question
student study plans
x
JEE MAIN, CBSE, NEET Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App
...