logo

Ask Questions, Get Answers

 
X
 Search
Want to ask us a question? Click here
Browse Questions
Ad
Home  >>  JEEMAIN and AIPMT  >>  Mathematics  >>  Trignometry
0 votes

Two lines drawn through a point on the circumference of a circle divided the circle into three regions of equal area.Then the angle $\theta$ between the line is given by

$\begin{array}{1 1}(a)\;3\theta+3\sin\theta=\pi&(b)\;6\theta+3\sin\theta=\pi\\(c)\;2\theta+\sin\theta=\pi&(d)\;\theta+\sin\theta=\large\frac{\pi}{2}\end{array}$

Can you answer this question?
 
 

1 Answer

0 votes
Area of region $ABC=\large\frac{\pi r^2}{3}$
Area of $OAB=\large\frac{1}{2}$$r^2.2\theta$
$\qquad\qquad\quad=r^2\theta$
Area of $\Delta OAC=\large\frac{1}{2}$$r^2\sin\theta$=Area of $\Delta OBC$
$\Rightarrow \large\frac{1}{2}$$r^2\sin\theta+\large\frac{1}{2}$$r^2\sin\theta+r^2\theta$
$\Rightarrow \large\frac{\pi r^2}{3}$
$\Rightarrow 3\sin\theta+3\theta=\pi$
Hence (a) is the correct answer.
answered Oct 7, 2013 by sreemathi.v
edited Mar 3, 2014 by meenakshi.p
 

Related questions

Ask Question
student study plans
x
JEE MAIN, CBSE, NEET Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App
...