Ask Questions, Get Answers

Want to ask us a question? Click here
Browse Questions
0 votes

The energy released when $1000$ small drops each of radius $10^{-7}\;m$ coalesce to from a single big drop is (Surface tension of liquid is $14 \times 10^{-2}\;N/m$)

\[\begin {array} {1 1} (a)\;7.9 \times 10^{12}\;J \\ (b)\;1.58 \times 10^{-11}\;J \\ (c)\;7.9 \times 10^{-11}\;J \\ (d)\;1.58 \times 10^{-12}\;J \end {array}\]

Can you answer this question?

1 Answer

0 votes
Let $R$ be radius of big drop
Then $\large\frac{4}{3} $$\pi R^3=1000\large\frac{4}{3}$$ \times \pi \times (10^{-7})^3$
$R= 10^{-6}$
Changes in surface area
$\Delta A= 4 \pi R^2- 1000 \times 4 \pi r^2$
$\qquad= 4 \pi \bigg[(10^{-6})^2 -10^3 \times (10^{-7})^2\bigg]$
$\qquad =-36 \pi (10^{-12}) m^2$
Energy released $=T \times |\Delta A|$
$\qquad=14 \times 10^{-2} \times 36 \times \large\frac{22}{7}$$ \times 10^{-12}$
$\qquad=1.58 \times 10^{-11}\;J$
Hence b is the correct answer.


answered Oct 8, 2013 by meena.p
edited Feb 18, 2014 by meena.p

Related questions

Ask Question
student study plans
JEE MAIN, CBSE, AIPMT Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App