logo

Ask Questions, Get Answers

 
X
 Search
Want to ask us a question? Click here
Browse Questions
Ad
Home  >>  CBSE XII  >>  Math  >>  Matrices
0 votes

Construct a 2 x 2 matrix, $A=[a_{ij}],$whose elements are given by: $\;a_{ij}=\frac{(i+2j)^2}{2}$

Note: This is a 3 part question, split as 3 separate questions here

Can you answer this question?
 
 

1 Answer

0 votes
Toolbox:
  • In general $a_{2\times 2}$ matrix is given by $\begin{bmatrix}a_{11} & a_{12}\\a_{21} & a_{22}\end{bmatrix}$
  • Elements are given by $a_{ij}=\frac{(1+2j)^2}{2}, $where (i,j) can be (1,1,) (1,2), (2,1) or (2,2)
Given,, $a_{ij}=\frac{(1+2j)^2}{2}, \Rightarrow$
$a_{11}=\frac{(1+2(1))^2}{2}=\frac{(1+2)^2}{2}=\frac{3^2}{2}=\frac{9}{2}.$
$a_{12}=\frac{(1+2(2))^2}{2}=\frac{(1+4)^2}{2}=\frac{5^2}{2}=\frac{25}{2}.$
$a_{21}=\frac{(1+2(1))^2}{2}=\frac{(2+2)^2}{2}=\frac{4^2}{2}=\frac{16}{2}=8.$
$a_{21}=\frac{(1+2(2))^2}{2}=\frac{(2+4)^2}{2}=\frac{6^2}{2}=\frac{36}{2}=18.$
Hence the required matrix is given by $A=\begin{bmatrix}\frac{9}{2} & \frac{25}{2}\\8 & 18\end{bmatrix}$
answered Feb 11, 2013 by sreemathi.v
edited Feb 27, 2013 by balaji.thirumalai
 

Related questions

Ask Question
student study plans
x
JEE MAIN, CBSE, NEET Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App
...