Ask Questions, Get Answers

Want to ask us a question? Click here
Browse Questions
Home  >>  CBSE XII  >>  Math  >>  Matrices
0 votes

In the matrix $A=\begin{bmatrix}2 & 5 & 19 & -7\\35 & -2 & \frac{5}{2} & 12\\\sqrt 3 & 1 & -5& 17\end{bmatrix},$write:\[(i)\;The\;order\;of\;the\;matrix,\qquad(ii)\;The\;number\;of\;the\;elements,\]\[(iii)\;Write\;the\;elements\;a_{13},a_{21},a_{33},a_{24},a_{23}\]

Can you answer this question?

1 Answer

0 votes
  • Order of matrix=A matrix having m rows and n column is called matrix of order $m\times n$ or simply $m\times n.$
  • Number of elements in a matrix=Product of rows and columns in a matrix.
  • i.e $m\times n.$
  • m=rows,n=column.
  • Elements of matrix:$a_ij$
  • It is element lying in the $i^{th}$ row and $j^{th}$ column.
In the given matrix we have 3 rows and 4 column.
Order of matrix is $3\times 4.$
Element of matrix=row $\times$ column.
In the above matrix we have 3 rows and 4 columns
Number of elements=$3\times 4$
The element $a_{13}$
$a_{13}\rightarrow$ $1^{st}$ row and $3^{rd}$ column \[a_{13}=19.\]
$a_{21}\rightarrow$ $2^{nd}$ row and $1^{st}$ column \[a_{21}=35.\]
$a_{33}\rightarrow$ $3^{rd}$ row and $3^{rd}$ column \[a_{33}=-5.\]
$a_{24}\rightarrow$ $2^{nd}$ row and $4^{th}$ column \[a_{24}=12.\]
$a_{23}\rightarrow$ $2^{nd}$ row and $3^{rd}$ column \[a_{23}=\frac{5}{2}.\]


answered Feb 11, 2013 by sreemathi.v

Related questions

Ask Question
student study plans
JEE MAIN, CBSE, AIPMT Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App