Ask Questions, Get Answers

Home  >>  CBSE XII  >>  Math  >>  Matrices

In the matrix $A=\begin{bmatrix}2 & 5 & 19 & -7\\35 & -2 & \frac{5}{2} & 12\\\sqrt 3 & 1 & -5& 17\end{bmatrix},$write:\[(i)\;The\;order\;of\;the\;matrix,\qquad(ii)\;The\;number\;of\;the\;elements,\]\[(iii)\;Write\;the\;elements\;a_{13},a_{21},a_{33},a_{24},a_{23}\]

1 Answer

  • Order of matrix=A matrix having m rows and n column is called matrix of order $m\times n$ or simply $m\times n.$
  • Number of elements in a matrix=Product of rows and columns in a matrix.
  • i.e $m\times n.$
  • m=rows,n=column.
  • Elements of matrix:$a_ij$
  • It is element lying in the $i^{th}$ row and $j^{th}$ column.
In the given matrix we have 3 rows and 4 column.
Order of matrix is $3\times 4.$
Element of matrix=row $\times$ column.
In the above matrix we have 3 rows and 4 columns
Number of elements=$3\times 4$
The element $a_{13}$
$a_{13}\rightarrow$ $1^{st}$ row and $3^{rd}$ column \[a_{13}=19.\]
$a_{21}\rightarrow$ $2^{nd}$ row and $1^{st}$ column \[a_{21}=35.\]
$a_{33}\rightarrow$ $3^{rd}$ row and $3^{rd}$ column \[a_{33}=-5.\]
$a_{24}\rightarrow$ $2^{nd}$ row and $4^{th}$ column \[a_{24}=12.\]
$a_{23}\rightarrow$ $2^{nd}$ row and $3^{rd}$ column \[a_{23}=\frac{5}{2}.\]


answered Feb 11, 2013 by sreemathi.v

Related questions

Download clay6 mobile appDownload clay6 mobile app