Browse Questions

# Evaluate $\sin^2\large\frac{\pi}{8}+$$\sin^2\large\frac{3\pi}{8}$$+\sin^2\large\frac{5\pi}{8}$$+\sin^2\large\frac{7\pi}{8} (a)\;1\qquad(b)\;2\qquad(c)\;3\qquad(d)\;4 Can you answer this question? ## 1 Answer 0 votes \sin\large\frac{7\pi}{8}$$=\sin(\pi-\large\frac{\pi}{8})$
$\quad\quad\;\;=\sin\large\frac{\pi}{8}$
$\sin\large\frac{5\pi}{8}$$=\sin(\pi-\large\frac{3\pi}{8}) \quad\quad\;\;=\sin\large\frac{3\pi}{8} \sin\large\frac{3\pi}{8}$$=\sin(\large\frac{\pi}{2}-\large\frac{3\pi}{8})$
$\quad\quad\;\;=\cos\large\frac{\pi}{8}$
Now we can get
$\sin^2\large\frac{\pi}{8}$$+\cos^2\large\frac{\pi}{8}$$+\sin^2\large\frac{3\pi}{8}+$$\sin^2\large\frac{\pi}{8} \Rightarrow \sin^2\large\frac{\pi}{8}$$+\sin^2\large\frac{3\pi}{8}$$+\sin^2\large\frac{3\pi}{8}+$$\sin^2\large\frac{\pi}{8}$
$\Rightarrow 2[\sin^2\large\frac{\pi}{8}+$$\sin^2\large\frac{3\pi}{8}] \Rightarrow 2[\sin^2\large\frac{\pi}{8}+$$\cos^2\large\frac{\pi}{8}]$
$\Rightarrow 2[1]$
$\Rightarrow 2$
Hence (b) is th correct answer.