logo

Ask Questions, Get Answers

 
X
 Search
Want to ask us a question? Click here
Browse Questions
Ad
Home  >>  JEEMAIN and AIPMT  >>  Mathematics  >>  Trignometry
0 votes

The maximum value of $3\cos\theta+4\sin\theta$ is

$(a)\;3\qquad(b)\;4\qquad(c)\;5\qquad(d)\;7$

Can you answer this question?
 
 

1 Answer

0 votes
We can have the maximum value at
$-\sqrt{3^2+4^2}\leq 3\cos\theta+4\sin\theta\leq \sqrt{3^2+4^2}$
$\Rightarrow -\sqrt{9+16}\leq 3\cos\theta+4\sin\theta\leq \sqrt{9+16}$
$\Rightarrow -\sqrt{25}\leq 3\cos\theta+4\sin\theta\leq \sqrt{25}$
$\Rightarrow -5\leq 3\cos\theta+4\sin\theta\leq 5$
Hence maximum value is at 5
Hence (c) is the correct answer.
answered Oct 10, 2013 by sreemathi.v
 

Related questions

Ask Question
student study plans
x
JEE MAIN, CBSE, NEET Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App
...