Ask Questions, Get Answers

Want to ask us a question? Click here
Browse Questions
Home  >>  JEEMAIN and AIPMT  >>  Mathematics  >>  Trignometry
0 votes

Suppose $\sin^2x\sin 3x=\sum\limits_{m=0}^{n}C_m\cos mx$ is an identity in $x$ where $C_0,C_1.......C_n$ are constants and $C_n\neq 0$ then the value of n is


Can you answer this question?

1 Answer

0 votes
$\sin^3x.\sin 3x=\sum\limits_{m=0}^{n}C_m\cos mx$
$\sin^3x\sin 3x=\large\frac{1}{4}$$[3\sin x-\sin 3x]\sin 3x$
$\qquad\qquad\;\;\;=\large\frac{1}{4}$$[\large\frac{3}{2}$$.2\sin x.\sin 3x-\sin^23x]$
$\qquad\qquad\;\;\;=\large\frac{1}{4}$$\big[\large\frac{3}{2}$$(\cos 2x-\cos x)-\large\frac{1}{2}$$(1-\cos x)\big]$
$\qquad\qquad\;\;\;=\large\frac{1}{8}$$\big[\cos 6x+3\cos 2x-3\cos x-1\big]$
Hence we observe that on LHS 6 is the max value of $m$
$\therefore n=6$
Hence (a) is the correct answer.
answered Oct 11, 2013 by sreemathi.v

Related questions

Ask Question
student study plans
JEE MAIN, CBSE, AIPMT Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App