logo

Ask Questions, Get Answers

 
X
 Search
Want to ask us a question? Click here
Browse Questions
Ad
Home  >>  JEEMAIN and AIPMT  >>  Mathematics  >>  Trignometry
0 votes

The sides of a triangle inscribed in a given circle .Subtend angles of $\alpha,\beta$ and $\gamma$ at the centre.The minimum value of the arithemetic mean of $\cos(\alpha+\pi/2),\cos(\beta+\pi/2)$ and $\cos(\gamma+\pi/2)$ is equal to

$(a)\;-\large\frac{\sqrt 3}{2}\qquad$$(b)\;\large\frac{1}{\sqrt 2}$$\qquad(c)\;\large\frac{2}{3}$$\qquad(d)\;\large\frac{3}{2}$

Can you answer this question?
 
 

1 Answer

0 votes
We know that A.M $\geq$ G.M
$\Rightarrow$ Min value of AM is obtained when AM=GM
$\Rightarrow$The quantities whose AM is being taken are equal.
(i.e) $\cos(\alpha+\pi/2)=\cos(\beta+\alpha/2)=\cos(\gamma+\pi/2)$
$\sin\alpha=\sin\beta=\sin\gamma$
Also $\alpha+\beta+\gamma=360^{\large\circ}$
$\Rightarrow \alpha=\beta=\gamma=120^{\large\circ}$
$\qquad\qquad\quad\;=\large\frac{2\pi}{3}$
$\therefore$ Minimum value of A.M=$\large\frac{\cos\big(\Large\frac{2\pi}{3}+\frac{\pi}{2}\big)+\cos\big(\Large\frac{2\pi}{3}+\frac{\pi}{3}\big)+\cos\big(\Large\frac{2\pi}{3}+\frac{\pi}{2}\big)}{3}$
$\Rightarrow \large\frac{-\sin\Large\frac{2\pi}{3}}{3}$
$\Rightarrow -\large\frac{\sqrt 3}{2}$
Hence (a) is the correct answer.
answered Oct 14, 2013 by sreemathi.v
 

Related questions

Ask Question
student study plans
x
JEE MAIN, CBSE, NEET Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App
...