logo

Ask Questions, Get Answers

 
X
 Search
Want to ask us a question? Click here
Browse Questions
Ad
0 votes

$^nC_0^2$ + $^nC_1^2$ + $^nC_2^2$ + ...... + $^nC_n^2$ = ?

$\begin{array}{1 1} n.^{2n}C_n \\ (n+1).^nC_n^2 \\ n.^nC_2^2 \\ ^{2n}C_n \end{array} $

Can you answer this question?
 
 

1 Answer

0 votes
$(1+x)^n=^nC_0+^nC_1x+^nC_2x^2+............^nC_nx^n$....(i)
$(x+1)^n=^nC_0x^n+^nC_1x{n-1}+^nC_2x^{n-2}+........^nC_n$...(ii)
$(i)\:\times\:(ii)=(1+x)^{2n}$
Comparing the coeff. of $x^n$ in the product of $(i)\:and\:(ii)$ on either sides,
coeff. of $x^n$ in the expansion of $(1+x)^{2n}=^nC_0^2+^nC_1^2+^nC_2^2+....^nC_n^2$
$\Rightarrow\:^nC_0^2+^nC_1^2+^nC_2^2+....^nC_n^2=^{2n}C_n$
answered Oct 14, 2013 by rvidyagovindarajan_1
 

Related questions

Ask Question
student study plans
x
JEE MAIN, CBSE, NEET Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App
...