Ask Questions, Get Answers

Want to ask us a question? Click here
Browse Questions
Home  >>  JEEMAIN and AIPMT  >>  Mathematics  >>  Trignometry
0 votes

$\large\frac{\tan 3x}{\tan x}$ lies between

$\begin{array}{1 1}(a)\;-\large\frac{1}{3}\normalsize\;and\;\;0\\(b)\;\;\large\frac{1}{3}\normalsize\;and\;\;3\\(c)\;-\large\frac{1}{3}\normalsize\;and\;\;\large\frac{1}{3}\\(d)\;-3\;and\;\;3\end{array}$

Can you answer this question?

1 Answer

0 votes
Let $y=\large\frac{\tan 3x}{\tan x}$
Then,$y=\large\frac{3\tan x-\tan^3x}{\tan x(1-3\tan^2x)}$
$y=\large\frac{\tan x(3-\tan^2x)}{\tan x(1-3\tan^2x)}$
Now $\tan^2x\geq 0$ for all $x$
$\large\frac{y-3}{3y-1}$$\geq 0$
$(y-3)(3y-1)\geq 0$
$y\leq \large\frac{1}{3}$ (or) $y\geq 3$
$\Rightarrow y$ does not lie between $\large\frac{1}{3}$ and $3$
Hence (b) is the correct option.
answered Oct 14, 2013 by sreemathi.v

Related questions

Ask Question
student study plans
JEE MAIN, CBSE, AIPMT Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App