logo

Ask Questions, Get Answers

 
X
 Search
Want to ask us a question? Click here
Browse Questions
Ad
Home  >>  JEEMAIN and AIPMT  >>  Mathematics  >>  Trignometry
0 votes

If $p$ and $q$ are +ve real numbers such that $p^2+q^2=1$ then the maximum value of $(p+q)$ is

$(a)\;2\qquad(b)\;\large\frac{1}{2}\qquad$$(c)\;\large\frac{1}{\sqrt 2}\qquad$$(d)\;\sqrt 2$

Can you answer this question?
 
 

1 Answer

0 votes
Using AM $\geq$ GM
$\large\frac{p^2+q^2}{2}$$\geq pq$
$\Rightarrow pq\leq \large\frac{1}{2}$
$p^2+q^2=1$
We know that
$(p+q)^2=p^2+q^2+2pq$
we have $p^2+q^2=1$
$(p+q)^2=1+2pq$
$(p+q)^2\leq 1+1$
$p+q\leq \sqrt 2$
Hence (d) is the correct answer.
answered Oct 16, 2013 by sreemathi.v
 

Related questions

Ask Question
student study plans
x
JEE MAIN, CBSE, NEET Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App
...