Ask Questions, Get Answers

Want to ask us a question? Click here
Browse Questions
Home  >>  JEEMAIN and AIPMT  >>  Mathematics  >>  Trignometry
0 votes

If $A$ and $B$ are positive acute angles and $\cos A=\large\frac{1}{7},$$\cos B=\large\frac{13}{14}$ then find $A-B$

$(a)\;60^{\large\circ }\qquad(b)\;30^{\large \circ}\qquad(c)\;45^{\large\circ}\qquad(d)\;90^{\large\circ}$

Can you answer this question?

1 Answer

0 votes
Since $\cos A=\large\frac{1}{7}$
$\cos B=\large\frac{13}{14}$
$\sin A=\sqrt{1-\cos ^2A}$
$\qquad=\large\frac{4\sqrt 3}{7}$
$\sin A=\sqrt{1-\cos ^2B}$
$\qquad=\large\frac{3\sqrt 3}{14}$
Now,$\cos(A-B)=\cos A.\cos B+\sin A.\sin B$
$\Rightarrow \large\frac{1}{7}\frac{13}{14}+\frac{4\sqrt 3}{7}.\frac{3\sqrt 3}{14}$
$\Rightarrow \large\frac{13}{98}+\frac{12\times 3}{98}$
$\Rightarrow \large\frac{13+36}{98}$
$\Rightarrow \large\frac{49}{98}$
$\Rightarrow \large\frac{1}{2}$
$\Rightarrow 60^{\large\circ}$
Hence (a) is the correct answer.
answered Oct 16, 2013 by sreemathi.v

Related questions

Ask Question
student study plans
JEE MAIN, CBSE, NEET Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App