logo

Ask Questions, Get Answers

 
X
 Search
Want to ask us a question? Click here
Browse Questions
Ad
Home  >>  JEEMAIN and AIPMT  >>  Mathematics  >>  Trignometry
0 votes

If $\sin\alpha\sin\beta+1=0$.Find $1+\cot \alpha\tan\beta=0$

$(a)\;1\qquad(b)\;2\qquad(c)\;3\qquad(d)\;0$

Can you answer this question?
 
 

1 Answer

0 votes
Given :
$\sin\alpha\sin \beta-\cos\alpha\cos\beta+1=0$
We can change as
$\cos\alpha\cos\beta-\sin\alpha\sin\beta=1$
It is of the form
$\cos (\alpha+\beta)=1$
Now,$1+\cot \alpha\tan\beta=1+\large\frac{\cos\alpha}{\sin\alpha}.\frac{\sin \beta}{\cos\beta}$
$\qquad\quad\qquad\qquad\;\;= \large\frac{\sin\alpha\cos\beta+\cos\alpha\sin\beta}{\sin\alpha\cos\beta}$
$\qquad\quad\qquad\qquad\;\;= \large\frac{\sin(\alpha+\beta)}{\sin\alpha\cos\beta}$
We know that
$\sin^2(\alpha+\beta)=1-\cos^2(\alpha+\beta)$
$\qquad\quad\quad\;\;= 1-1$
$\qquad\quad\quad\;\;= 0$
Hence $\large\frac{0}{\sin\alpha\cos\beta}$$=0$
Hence (d) is the correct option.
answered Oct 16, 2013 by sreemathi.v
 

Related questions

Ask Question
student study plans
x
JEE MAIN, CBSE, NEET Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App
...