Ask Questions, Get Answers

Want to ask us a question? Click here
Browse Questions
Home  >>  JEEMAIN and AIPMT  >>  Mathematics  >>  Trignometry
0 votes

Simplify :$\large\frac{\sin 7x-\sin 3x-\sin 5x+\sin x}{\cos 7x+\cos 3x-\cos 5x-\cos x}$

$(a)\;\tan 2x\qquad(b)\;\tan x\qquad(c)\;\cot x\qquad(d)\;1$

Can you answer this question?

1 Answer

0 votes
Numerator =$(\sin 7x+\sin x)-(\sin 5x+\sin 3x)$
$\qquad\qquad=2\sin 4x.\cos 3x-2\sin 4x.\cos x$
Using the formula
$\sin C-\sin D=2\cos\large\frac{C+D}{2}$$.\sin\large\frac{C-D}{2}$
$\Rightarrow (\sin 7x+\sin x)-(\sin 5x+\sin 3x)$
$\Rightarrow \big[(2\sin\large\frac{8x}{2}$$\cos\large\frac{6x}{2})$$-(2\sin\large\frac{8x}{2}.$$\cos\large\frac{2x}{2})\big]$
$\Rightarrow 2\sin 4x.\cos 3x-2\sin 4x.\cos x$
$\Rightarrow 2\sin 4x[\cos 3x-\cos x]$
Denominator :-
$\cos 7x+\cos 3x-\cos 5x-\cos x$
$\Rightarrow 2\sin 4x\sin x-2\sin 4x\sin 3x$
$\Rightarrow 2\sin 4x(\sin x-\sin 3x)$
Now we have
$\Rightarrow \large\frac{2\sin 4x[\cos 3x-\cos x]}{2\sin 4x[\sin x-\sin 3x]}$
$\Rightarrow \large\frac{\cos 3x-\cos x}{\sin x-\sin 3x}$
$\Rightarrow \large\frac{\cos x-\cos 3x}{\sin 3x-\sin x}$
$\Rightarrow \large\frac{2\sin 2x\sin x}{2\cos 2x\sin x}$
$\Rightarrow \large\frac{\sin 2x}{\cos 2x}$
$\Rightarrow \tan 2x$
Hence (a) is the correct answer.
answered Oct 16, 2013 by sreemathi.v

Related questions

Ask Question
student study plans
JEE MAIN, CBSE, AIPMT Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App