Ask Questions, Get Answers

Want to ask us a question? Click here
Browse Questions
Home  >>  JEEMAIN and AIPMT  >>  Mathematics  >>  Trignometry
0 votes

Evaluate : $\tan\big[\large\frac{1}{2}$$\cos^{-1}\large\frac{\sqrt 5}{3}\big]$

$(a)\;\large\frac{3-\sqrt 5}{2}\qquad$$(b)\;\large\frac{3+\sqrt 5}{2}\qquad$$(c)\;0\qquad(d)\;None\;of\;these$

Can you answer this question?

1 Answer

0 votes
Let $\cos^{-1}\big(\large\frac{\sqrt 5}{3}\big)$$=2\theta$
$\cos 2\theta=\large\frac{\sqrt 5}{3}$
$\large\frac{1-\tan^2\theta}{1+\tan^2\theta}=\frac{\sqrt 5}{3}$
$\large\frac{1+\tan^2\theta}{1-\tan^\theta}=\frac{3}{\sqrt 5}$
$\large\frac{2\tan^2\theta}{2}=\frac{3-\sqrt 5}{3+\sqrt 5}$
$\tan^2\theta=\big(\large\frac{3-\sqrt 5}{3+\sqrt 5}\big)\big(\large\frac{3-\sqrt 5}{3-\sqrt 5}\big)$
$\tan^2\theta=\large\frac{(3-\sqrt 5)^2}{4}$
$\tan\theta=\pm\big(\large\frac{3-\sqrt 5}{2}\big)$------(1)
$\Rightarrow 0\leq 2\theta < \pi$
$\therefore 0\leq \theta\leq \large\frac{\pi}{2}$
$\Rightarrow \theta$ lies in the first quadrant.
Hence $\tan\theta$ must be +ve.
From (1)
$\tan\theta=\large\frac{3-\sqrt 5}{2}$
Hence (a) is the correct option.
answered Oct 17, 2013 by sreemathi.v

Related questions

Ask Question
student study plans
JEE MAIN, CBSE, NEET Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App