Ask Questions, Get Answers

Want to ask us a question? Click here
Browse Questions
Home  >>  JEEMAIN and AIPMT  >>  Mathematics  >>  Trignometry
0 votes

In a $\Delta PQR$ if $3\sin P+4\cos Q=6.4\sin Q+3\cos P=1$ then the angle $R$ is equal to

$\begin{array}{1 1}(a)\;\large\frac{5\pi}{6}&(b)\;\large\frac{\pi}{6}\\(c)\;\large\frac{\pi}{4}&(d)\;\large\frac{3\pi}{4}\end{array}$

Can you answer this question?

1 Answer

0 votes
Step 1:
Given :
$3\sin P+4\cos Q=6$-----(1)
$4\sin Q+3\cos P=1$-----(2)
Squaring and adding (1) and (2) we get,
$9\sin^2P+16\cos^2Q+2\sin P\cos Q+16\sin^2Q+9\cos^2P+24\sin Q\cos P=36+1$
$\Rightarrow 37$
$9(\sin^2P+\cos^2P)+16(\sin^2Q+\cos^2Q)+24(\sin P\cos Q+\cos P\sin Q)=37$
$\Rightarrow 9+16+24\sin(P+Q)=37$
$\sin^2Q+\cos ^2Q=1$
$\sin A\cos B+\cos A\sin B=\sin(A+B)$
Step 2:
$P+Q=\large\frac{\pi}{6}$ or $\large\frac{5\pi}{6}$
$R=\large\frac{5\pi}{6}$ or $\large\frac{\pi}{6}$
If $R=\large\frac{5\pi}{6}$ then $0 < P < Q <\large\frac{\pi}{6}$
$\Rightarrow \cos Q < 1$ and $\sin P <\large\frac{1}{2}$
$\Rightarrow 3\sin P+4\cos Q < \large\frac{1}{2}$ which is not true.
So $R=\large\frac{\pi}{6}$
answered Oct 18, 2013 by sreemathi.v

Related questions

Ask Question
student study plans
JEE MAIN, CBSE, NEET Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App