Ask Questions, Get Answers

Want to ask us a question? Click here
Browse Questions
Home  >>  JEEMAIN and AIPMT  >>  Mathematics  >>  Trignometry
0 votes

If $x=\sin^{14}\theta+\cos ^{20}\theta$,then for all $\theta\in R$

$\begin{array}{1 1}(a)\;0< x <1&(b)\;0 < x \leq 1\\(c)\;0 \leq x< 1&(d)\;0 \leq x\leq 1\end{array}$

Can you answer this question?

1 Answer

0 votes
We know that
$-1 \leq \sin\theta \leq 1$ and $-1 \leq \cos\theta \leq 1$ for all values of $\theta$
$\Rightarrow \sin^2\theta\leq 1$ & $\cos^2\theta \leq 1$
We also know that $a^n \leq a$ for all $n\in N,n> 1$ and 0 < a$\leq 1$
$\therefore \sin^{14}\theta=(\sin^2\theta)^7\leq \sin^2\theta$
$\cos^{20}\theta=(\cos^2\theta)^{10}\leq \cos^2\theta$ for all $\theta \in R$
$\Rightarrow \sin^{14}\theta+\cos ^{20}\theta\leq \sin^2\theta+\cos^2\theta$ for all $\theta\in R$
$\Rightarrow \sin^{14}\theta+\cos^{20}\theta \leq 1$ for all $\theta\in R$
$\Rightarrow x\leq 1$
Also $x=\sin^{14}\theta+\cos^{20}\theta >0$ for all $\theta\in R$
$\Rightarrow \theta < x\leq 1$
Hence (b) is the correct answer.
answered Oct 18, 2013 by sreemathi.v

Related questions

Ask Question
student study plans
JEE MAIN, CBSE, NEET Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App