Ask Questions, Get Answers

Want to ask us a question? Click here
Browse Questions
0 votes

The sum of last $30$ coefficients in the expansion of $(1+x)^{59}$ when expanded in ascending power of $x$ is ?

$\begin{array}{1 1} 2^{29} \\ 2^{28} \\ ^{60} C_{30} -2^{19} \\ 2^{58} \end{array}$

Can you answer this question?

1 Answer

0 votes
  • $^nC_0+^nC_1+^nC_2+........^nC_n=2^n$
There are 60 terms in the expansion of $(1+x)^{59}$.
Let the sum of last 30 coefficients be $S$
Since $^nC_r=^nC_{n-r}$, we can write $S$ as
Adding both the $S$ we get
answered Oct 19, 2013 by rvidyagovindarajan_1

Related questions

Ask Question
student study plans
JEE MAIN, CBSE, NEET Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App