Ask Questions, Get Answers

Want to ask us a question? Click here
Browse Questions
Home  >>  JEEMAIN and AIPMT  >>  Mathematics  >>  Trignometry
0 votes

The value of the expression $\large\frac{\sin^3x}{1+\cos x}+\frac{\cos^3x}{1-\sin x}$ is

$\begin{array}{1 1}(a)\;\sqrt 2\cos\big[\large\frac{\pi}{4}-\normalsize x\big]&(b)\;\sqrt 2\cos\big[\large\frac{\pi}{4}+\normalsize x\big]\\(c)\;\sqrt 2\sin\big[\large\frac{\pi}{4}-\normalsize x\big]&(d)\;None\;of\;these\end{array}$

Can you answer this question?

1 Answer

0 votes
Step 1:
Let $\large\frac{\sin^3x}{1+\cos x}+\frac{\cos^3x}{1-\sin x}$$=A$
$A=\large\frac{(\sin^3x+\cos^3x)+(\cos^4x-\sin^4x)}{(1+\cos x)(1-\sin x)}$
$A=\large\frac{(\sin^3x+\cos^3x)\big((\cos x+\sin x)(\cos x-\sin x)(\cos^2x+\sin^2x)\big)}{(1+\cos x)(1-\sin x)}$
$A=\large\frac{(\sin x+\cos x)\{(1-\sin x\cos x)+(\cos x-\sin x)}{1+\cos x-\sin x-\sin x\cos x}$
Step 2:
$A=\sin x+\cos x$
$A=\sqrt 2\big[\large\frac{1}{\sqrt 2}$$\sin x+\large\frac{1}{\sqrt 2}$$\cos x\big]$------(1)
$A=\sqrt 2\big[\cos\large\frac{\pi}{4}$$\sin x+\sin\large\frac{\pi}{4}$$\cos x\big]$
$\Rightarrow \sqrt 2\sin\big[\large\frac{\pi}{4}$$+x]$
Step 3:
By equation (1) we get
$A=\sqrt 2\big[\sin\large\frac{\pi}{4}$$\sin x+\cos\large\frac{\pi}{4}$$\cos x\big]$
$\;\;=\sqrt 2\cos\big[\large\frac{\pi}{4}$$-x\big]$
Hence (a) is the correct option.
answered Oct 21, 2013 by sreemathi.v

Related questions

Ask Question
student study plans
JEE MAIN, CBSE, NEET Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App