Ask Questions, Get Answers

Want to ask us a question? Click here
Browse Questions
Home  >>  JEEMAIN and AIPMT  >>  Mathematics  >>  Trignometry
0 votes

The radii $r_1,r_2,r_3$ of described circle of a $\Delta$le ABC are in harmonic progression.If its area is 24sq .cm,and its perimeter is 24,find the lengths of its sides

$\begin{array}{1 1}(a)\;a=6,b=8,c=10&(b)\;a=7,b=9,c=11\\(c)\;a=0,b=2,c=3&(d)\;None\;of\;these\end{array}$

Can you answer this question?

1 Answer

0 votes
Step 1:
Let $s$ be the semi-perimeter of $\Delta$ABC then $s=12cm$
Given :
$\Delta =24$sq.cm
Let $a,b,c$ be the lengths of sides of $\Delta ABC$
$\Rightarrow \large\frac{24}{12-a}$
$\Rightarrow \large\frac{24}{12-b}$
$r_3= \large\frac{\Delta}{s-c}$
$\Rightarrow \large\frac{24}{12-c}$
Step 2:
$r_1,r_2,r_3$ are in H.P
Step 3:
From (1) and (2) we have
From (1) we have
$\Rightarrow c=16-a$
Step 4:
Now area $\Delta=\sqrt{s(s-a)(s-b)(s-c)}$
$24\times 24=12(12-a)(12-b)(12-c)$
$a=6$ or $a=10$
When $a=6\Rightarrow c=10$
When $a=10\Rightarrow c=6$
$\therefore a=6cm,b=8cm,c=10cm$
answered Oct 21, 2013 by sreemathi.v
edited Mar 3, 2014 by meenakshi.p

Related questions

Ask Question
student study plans
JEE MAIN, CBSE, AIPMT Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App