Ask Questions, Get Answers

Want to ask us a question? Click here
Browse Questions
Home  >>  CBSE XII  >>  Math  >>  Three Dimensional Geometry
0 votes

Find the vector equation of the plane passing through the intersection of the planes $ \overrightarrow r .(2\hat i + 2 \hat j - 3\hat k) = 7, \overrightarrow r .(2\hat i + 5\hat j + 3\hat k ) = 9$ and through the point $(2, 1, 3).$

$\begin{array}{1 1} \overrightarrow r .(4\hat i + 7\hat j -15\hat k)=30 \\ \overrightarrow r .(4\hat i + 7\hat j -15\hat k)=153 \\ \overrightarrow r .(38\hat i + 68\hat j + 3\hat k)=153 \\ \overrightarrow r .(38\hat i + 68\hat j + 3\hat k)=-153\end{array} $

Can you answer this question?

1 Answer

0 votes
  • Vector equation of a plane passing through the intersection of two planes is $\overrightarrow r.(\overrightarrow {n_1}+\lambda\overrightarrow {n_2})=\overrightarrow d_1+\lambda \overrightarrow d_2$
Step 1:
Given vector equations of the plane are
$\overrightarrow r.(2\hat i+2\hat j-3\hat k)=7$
$\overrightarrow r.(2\hat i+5\hat j+3\hat k)=9$
These equations can be written as
$\overrightarrow r.(2\hat i+2\hat j-3\hat k-7)=0$
$\overrightarrow r.(2\hat i+5\hat j+3\hat k-9)=0$
Equation of any plane passing through the intersection of the given planes is given by
$[\overrightarrow r.(2\hat i+2\hat j-3\hat k-7)]+\lambda[\overrightarrow r.(2\hat i+5\hat j+3\hat k-9)]=0$
$\Rightarrow [\overrightarrow r.(2\hat i+2\hat j-3\hat k)]+\lambda[\overrightarrow r.(2\hat i+5\hat j+3\hat k)]=7+9\lambda$----(1)
This passes through the point $(2,1,3)$
Therefore its position vector is $\overrightarrow r=2\hat i+\hat j+3\hat k$
Step 2:
Hence substituting for $\overrightarrow r$ in equ(1) we get,
$[(2\hat i+\hat j+3\hat k).(2\hat i+2\hat j-3\hat k)]+\lambda[(2\hat i+\hat j+3\hat k).(2\hat i+5\hat j+3\hat k)]=7+9\lambda$
$\Rightarrow 2(2+2\lambda)+1(2+5\lambda)+3(3\lambda-3)=7+9\lambda$
On simplifying we get
Step 3:
Substituting the value of $\lambda$ in equ(1) we get
$[\overrightarrow r.(2\hat i+2\hat j-3\hat k)]+\large\frac{10}{9}$$[\overrightarrow r.(2\hat i+5\hat j+3\hat k)]=7+9.\large\frac{10}{9}$
On simplifying we get
$\Rightarrow \overrightarrow r\big(\large\frac{38}{9}$$\hat i+\large\frac{68}{9}$$\hat j+\large\frac{3}{9}$$\hat k\big)=17$
Therefore $\overrightarrow r.(38\hat i+68\hat j+3\hat k)=153$
This is the vector equation in the required plane.
answered May 31, 2013 by sreemathi.v

Related questions

Ask Question
student study plans
JEE MAIN, CBSE, AIPMT Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App