logo

Ask Questions, Get Answers

 
X
 Search
Want to ask us a question? Click here
Browse Questions
Ad
Home  >>  CBSE XII  >>  Math  >>  Relations and Functions
0 votes

Let $f,g:R \rightarrow $R be defined by $f(x)=2x+1$ and $g(x)=x^2-2,\forall x \in R,$respectively. Then, find $g\;of(x)$.

$\begin{array}{1 1} 4x^2 -4x -1 \\ 4x^2+4x-1 \\ 4x^2+4x +1 \\ 4x^2-4x+1 \end{array}$

Can you answer this question?
 
 

1 Answer

0 votes
Toolbox:
  • $f;g:R \to R$
  • Then $gof =g(f(x)) \qquad \forall x \in R$
$f(x)=2x+1$
 
$g(x)=x^2-2$
 
$=g(2x+1)$
 
$=(2x+1)^2-2$
 
$=4x^2+4x+1-2$
 
$=4x^2+4x+1$
 
Hence $ gof(x)=4x^2+4x-1$

 

answered Mar 1, 2013 by meena.p
 

Related questions

Ask Question
student study plans
x
JEE MAIN, CBSE, NEET Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App
...