logo

Ask Questions, Get Answers

 
X
 Search
Want to ask us a question? Click here
Browse Questions
Ad
Home  >>  CBSE XII  >>  Math  >>  Relations and Functions
0 votes

Each of the following defines a relation on N : \begin{array}{1 1} (i)\quad x\; is\; greater\; than\; y,x,y\quad N\\(ii)\quad x+y=10,x,y\quad N\\(iii)\quad x\;y\;is\;square\; of\; an\; integer\;x,y\quad N\\(iv)\quad x+4y=10\;x,y\quad N\end{array}Determine which of the above relations are reflexive,symmetric and transitive.

Can you answer this question?
 
 

1 Answer

0 votes
Toolbox:
  • A relation R in a set A is called $\mathbf{ reflexive},$ if $(a,a) \in R\;$ for every $\; a\in\;A$
  • A relation R in a set A is called $\mathbf{symmetric}$, if $(a_1,a_2) \in R\;\Rightarrow\; (a_2,a_1)\in R \; for \;a_1,a_2 \in A$
  • A relation R in a set A is called $\mathbf{transitive},$ if $(a_1,a_2) \in R$ and $(a_2,a_3) \in R \; \Rightarrow \;(a_1,a_3)\in R$ for all$\; a_1,a_2,a_3 \in A$
Given R defined by
 
$R \{(x,y):x \;is\; greater\; than\; y\; \qquad x,y \in N\}$
 
Consider (1,1) one cannot be greater than for every element $ x \in N$
 
$ x > x$
 
Hence R is not reflexive
 
Consider $(3,2) \in R $ ie 3 is greater than 2
 
but $(2,3) \notin$ as 2 is not greater than 3
 
R is not symmetric
 
Consider $(3,2),(2,1) \in R$
 
ie $ 3 > 2 \;and \;2 > 1$
 
$=>3 > 1$
 
Hence $(3,1) \in R$
 
R is transitive
 
Solution:R is transitive but not reflexive and not symmetric

 

 

answered Mar 4, 2013 by meena.p
edited Mar 27, 2013 by meena.p
 

Related questions

Ask Question
student study plans
x
JEE MAIN, CBSE, NEET Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App
...