Ask Questions, Get Answers

Want to ask us a question? Click here
Browse Questions
Home  >>  CBSE XII  >>  Math  >>  Relations and Functions
0 votes

Let A={1,2,3....9} and R be the relation in AxA defined by (a,b)R(c,d) if a+d=b+c for (a,b),(c,d) in AxA.Prove that R is an equivalence relation and also obtain the equivalent class[(2,5)].

Can you answer this question?

1 Answer

0 votes
  • 1.R is an equivalance relation if R is 
  • a) reflexive ie $(a,b) \in A \times A$ $(a,b) R(a,b)$
  • b) symmetric ie $(a,b) R (c,d) => (c,d) R (a,b)$ $ (a,b)(c,a) \in A \times A$
  • c) transitive ie $(a,b) R (c,d) ;(c,d) R (e,f) =>(a,b) R (e,f)$ $(a,b)(c,d),(e,f) \in A \times A$
  • 2.Equivalent class of [(2,5)] under R is given by set of ordered pair $(a,b) \in A \times A$ such that $(2,5) R (a,b)$ $2+b=5+a$
R in $A \times A$
$(a,b) R (c,d)$ if $\qquad (a,b)(c,d) \in A \times A$
Consider $(a,b) R (a,b) \qquad (a,b) \in A \times A$
Hence R is reflexive
Consider $(a,b) R (c,d)$ given by $(a,b)(c,d) \in A \times A$
$=> (c,d) R (a,b)$
Hence R is symmetric
Let $(a,b) R (c,d)\; and \; (c,d) R(e,f)$
$(a,b),(c,d),(e,f), \in A \times A$
$a+b=b+c$ and $c+f=d+e$
$=>a-c=b-d \qquad (1) \qquad c+f=d+e \qquad(2)$
adding (1) and (2)
$=> (a,b) R(e,f)$
R is transitive
R is an equivalnce relation
we select from set $A=\{1,2,3,....9\}$
a and b such that
Consider (1,4)
$(2,5) R (1,4) => 2+4 =5+1$
$[(2,5)]=\{(1,4)(2,5),(3,6),(4,7),(5,8),(6,9)\}$ is the equivalent class. under relation R



answered Mar 5, 2013 by meena.p
edited Mar 27, 2013 by meena.p

Related questions

Ask Question
student study plans
JEE MAIN, CBSE, AIPMT Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App