logo

Ask Questions, Get Answers

X
 
Home  >>  CBSE XII  >>  Math  >>  Relations and Functions

Let * be binary operation defined on R by $ a*b=1+ab, a,b \in R.$ Then the operation * is

(i) commutative but not associative (ii) associative but not commutative (iii) neither commutative nor associative (iv) both commutative and associative

1 Answer

Toolbox:
  • 1. A binary operation * defined on R is commutative if $a*b=b*a$
  • 2. A binary operation * defined on R is associative if $(a*b)*c=a*(b*c) \qquad a,b \in R$
Step 1: commutative
 
* operation defined on R by
 
$a*b=1+ab \qquad a,b \in R$
 
$b*a=1+ba$
 
$=1+ab$
 
Multiplication is commutative in R
 
$ a*b =b*a$
 
* operation is commutative
 
Step 2: Associative
 
$(a*b)*c=(1+ab)*c$
 
$=1+(1+ab)c$
 
$=1+c+abc$
 
$a \times (b \times c)=a * (1+bc)$
 
$=1+a(1+bc)$
 
$=1+a+abc$
 
$(a*b)*c \neq a *(b*c)$
 
* operation is not associative
 
Solution: * operation is commutative but not associative
 
(i) option is correct

 

 

answered Mar 5, 2013 by meena.p
edited Mar 27, 2013 by meena.p
 

Related questions

Download clay6 mobile appDownload clay6 mobile app
...
X