logo

Ask Questions, Get Answers

 
X
 Search
Want to ask us a question? Click here
Browse Questions
Ad
Home  >>  CBSE XII  >>  Math  >>  Relations and Functions
0 votes

If a relation R on the set (1,2,3) be defined by R={(1,2)}, then R is

\begin{array}{1 1}(A)\quad reflexive & (B)\quad transitive\\(C)\quad symmetric & (D)\quad none\;of\;these\end{array}

Can you answer this question?
 
 

1 Answer

0 votes
Toolbox:
  • A relation R in a set A is called $\mathbf{ reflexive},$ if $(a,a) \in R\;$ for every $\; a\in\;A$
  • A relation R in a set A is called $\mathbf{symmetric}$, if $(a_1,a_2) \in R\;\Rightarrow\; (a_2,a_1)\in R \; for \;a_1,a_2 \in A$
  • A relation R in a set A is called $\mathbf{transitive},$ if $(a_1,a_2) \in R$ and $(a_2,a_3) \in R \; \Rightarrow \;(a_1,a_3)\in R$ for all$\; a_1,a_2,a_3 \in A$
$A=\{1,2,3\}$
$R=\{(1,2)\}$
Since $(1,1)(2,2)(3,3) \notin R$
R is not reflexive
$(1,2) \in R$ but $(2,1) \notin R$
R is not symmetric
$(1,2) \in R$ but $(2,1) \notin R $ and $(1,1) \notin R$
Therefore r is not transitive
Solution:Therefore 'D'option is correct

 

answered Mar 5, 2013 by meena.p
edited Mar 27, 2013 by meena.p
 

Related questions

Ask Question
student study plans
x
JEE MAIN, CBSE, NEET Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App
...