\begin{array}{1 1}(A)\quad reflexive & (B)\quad transitive\\(C)\quad symmetric & (D)\quad none\;of\;these\end{array}

Want to ask us a question? Click here

Browse Questions

Ad |

0 votes

0 votes

- A relation R in a set A is called $\mathbf{ reflexive},$ if $(a,a) \in R\;$ for every $\; a\in\;A$
- A relation R in a set A is called $\mathbf{symmetric}$, if $(a_1,a_2) \in R\;\Rightarrow\; (a_2,a_1)\in R \; for \;a_1,a_2 \in A$
- A relation R in a set A is called $\mathbf{transitive},$ if $(a_1,a_2) \in R$ and $(a_2,a_3) \in R \; \Rightarrow \;(a_1,a_3)\in R$ for all$\; a_1,a_2,a_3 \in A$

$A=\{1,2,3\}$

$R=\{(1,2)\}$

Since $(1,1)(2,2)(3,3) \notin R$

R is not reflexive

$(1,2) \in R$ but $(2,1) \notin R$

R is not symmetric

$(1,2) \in R$ but $(2,1) \notin R $ and $(1,1) \notin R$

Therefore r is not transitive

Solution:Therefore 'D'option is correct

Ask Question

Take Test

x

JEE MAIN, CBSE, AIPMT Mobile and Tablet App

The ultimate mobile app to help you crack your examinations

...