Ask Questions, Get Answers

Want to ask us a question? Click here
Browse Questions
Home  >>  CBSE XII  >>  Math  >>  Relations and Functions
0 votes

Let $f\;:\;R\rightarrow R$ be defined by $f(x)\;=\;\frac{1}{x}\quad x\;\in\; R.$Then f is

\begin{array}{1 1}(A)\;one-one & (B)\;onto \\(C)\;bijective & (D)\; f \;is\; not\; defined\end{array}
Can you answer this question?

1 Answer

0 votes
  • 1.A function $f:R \to R$ is one-one if $f(x)=f(y)=>x=y \qquad x,y \in R$
  • 2. A function $f:R \to R$ is onto if for every $ y \in R$ then exists $x \in R $ such that $f(x)=y$
  • 3.A function $f:R \to R$ is bijective if it is both one-one and onto
  • 4.A function is defined in $f:R \to R$ if f(x) is true for all values of $x \in B$
Given $f: R \to R4 \qquad ; f(x)=\frac{1}{x} \qquad x \in R$
Let $x=0$
$f(x)=\frac{1}{0} $ is not defined
Solution: 'D' option is correct .


answered Mar 5, 2013 by meena.p
edited Mar 27, 2013 by meena.p

Related questions

Ask Question
student study plans
JEE MAIN, CBSE, AIPMT Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App