Ask Questions, Get Answers

Want to ask us a question? Click here
Browse Questions
Home  >>  CBSE XII  >>  Math  >>  Relations and Functions
0 votes

Let $f:[2,\infty)\rightarrow R $ be the function defined by $f(x)=x^2-4x+5,$ then the range of f is

\begin{array}{1 1}(a)\;R & (b)\;[1,\infty)\\(c)\;[4,\infty) & (d)\;[5,\infty)\end{array}

Can you answer this question?

1 Answer

0 votes
  • Range of $f:[2,\infty) \to R$ is the set of values f(x) can take for $x \in domain\; f\;ie\;[2,\infty)$
$f:[2,\infty) \to R$
Let $ x=2 \qquad f(x)=x^2-4(2) +5$
Let $ x=3 \qquad f(x)=x^3-4(3) +5$
For $ [2,\infty)$ the function takes values from $\{1,2,.......\infty\}$ we say that range of f is $[1, \infty)$
'B' option is correct


answered Mar 5, 2013 by meena.p

Related questions

Ask Question
student study plans
JEE MAIN, CBSE, AIPMT Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App