Ask Questions, Get Answers

Want to ask us a question? Click here
Browse Questions
Home  >>  CBSE XII  >>  Math  >>  Relations and Functions
0 votes

Let $\; f:R \rightarrow R$ be given as $\;f(x)=\tan x $. Then $\;f^{-1}(1)$ is

\begin{array}{1 1}(A)\;\frac{\pi}{4} & (B)\;{n\pi+\frac{\pi}{4}:n\in Z}\\(C)\;does\;not\;exist & (D)\;none\; of\; these\end{array}

Can you answer this question?

1 Answer

0 votes
  • $f(x)=\tan x$
  • To find $f^{-1}(1)$ we check if for what values
  • $(fof^{-1})(1)=1=>f(f^{-1}(1))=1$
  • $or =\tan (f^{-1}(1))=1$
$f:R \to R$
$f(x)=\tan x$
since $f^{-1} $ is inverse of f
$\tan (f^{-1}(1))=1$
But $\tan(\frac{\pi}{4})=1$
$\tan (f^{-1}(1))=\tan \frac{\pi}{4}$
=>$f^{-1}(1)=n\pi+\frac{\pi}{4} \; n \in z$
'B' option is correct
If $\tan \theta =\tan \alpha$
$\theta= n \pi +\alpha \; n \in z$


answered Mar 5, 2013 by meena.p

Related questions

Ask Question
student study plans
JEE MAIN, CBSE, AIPMT Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App