Ask Questions, Get Answers

Home  >>  CBSE XII  >>  Math  >>  Relations and Functions

True or False: Let R={(3,1),(1,3),(3,3)} be a relation defined on the set A={1,2,3}.Then R is symmetric,transitive but not reflexive.

1 Answer

  • 1. A relation R defined on A is reflexive if $(a,a) \in R \qquad a \in A$
  • 2. A relation R is symmetric if $(a,b) \in R=>(b,a) \in R \qquad a,b \in A$
  • 3. A relation R is transitive if $(a,b) \in R,(b,c) \in R =>(a,c) \in R \qquad a,b,c \in A$
$R=\{(3,1),(1,3),(3,3)\} \qquad A=\{1,2,3\}$
$(1,1)(2,2) \in R$
Therefore R is not reflexive
$(3,1) \in R => (1,3) \in R$
R is symmetric
$(3,1) \in R$ but there does not exists
$(1,2) or (1,4) \in R$
So R is not transitive
Hence R is symmetric but neither transitive nor reflexive



answered Mar 6, 2013 by meena.p

Related questions