Ask Questions, Get Answers

Want to ask us a question? Click here
Browse Questions
Home  >>  CBSE XII  >>  Math  >>  Relations and Functions
0 votes

True or False: Let $f:R \rightarrow R$ be the function defined by f(x)=sin (3x+2)$\quad x\in R$.Then f is invertible.

Can you answer this question?

1 Answer

0 votes
  • 1.A function f is invertible if f is one -one (ie) $ f(x)=f(y)=>x=y \qquad x \in R$ and f is onto
  • (ie) for every $ y\in R $ there exists $ x \in R$ such that f(x)=y
$f:R \to R$
$f(x)=\sin (3x+2) \qquad x \in R$
let $f(x_1)=f(x_2)$
$\sin (3x_1+2)=\sin (3x_2+2)$
$=> 3x_1+2=2x\pi +3x_2+2$
Therefore it does not imply $x_1=x_2$
Therefore f is not one one
f is not invertible



answered Mar 6, 2013 by meena.p

Related questions

Ask Question
student study plans
JEE MAIN, CBSE, AIPMT Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App