logo

Ask Questions, Get Answers

 
X
 Search
Want to ask us a question? Click here
Browse Questions
Ad
Home  >>  CBSE XII  >>  Math  >>  Relations and Functions
0 votes

True or False: Every relation which is symmetric and transitive is also reflexive.

Can you answer this question?
 
 

1 Answer

0 votes
Toolbox:
  • 1.For a given function R in A.
  • A relation R in a set A is called $\mathbf{ reflexive},$ if $(a,a) \in R\;$ for every $\; a\in\;A$
  • A relation R in a set A is called $\mathbf{symmetric}$, if $(a_1,a_2) \in R\;\Rightarrow\; (a_2,a_1)\in R \; for \;a_1,a_2 \in A$
  • A relation R in a set A is called $\mathbf{transitive},$ if $(a_1,a_2) \in R$ and $(a_2,a_3) \in R \; \Rightarrow \;(a_1,a_3)\in R$ for all$\; a_1,a_2,a_3 \in A$
  • 2. we show by example the given statment is to not true
Let $A=\{-5,-6\}$
 
Define $R=\{(-5,-6)(-6,-5),(-5,-5)\}$
 
R is not reflexive since $(-6,-6) \in R$
 
R is symmetric since $(-5,-6) \in R=>(-6,-5) \in R$
 
R is transitive since $(-5,-6),(-6,-5) \in R=>(-5,-5) \in R$
 
Hence R is a relation it is symmetric,transitive but not reflexive
 
Symmetric & transiive dies not imply reflexive
 
$'False'$

 

 

answered Mar 6, 2013 by meena.p
edited Mar 28, 2013 by meena.p
 

Related questions

Ask Question
student study plans
x
JEE MAIN, CBSE, NEET Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App
...